Preparation and self-assembly behavior of anisotropic polymer patchy particles

F. Naderi Mehr, D. Grigoriev, N. Puretskiy and A. Böker

Fraunhofer Institute for Applied Polymer Research IAP
Potsdam, Germany

July 10, 2019
Motivation

Analogue to polymerase chain reaction of DNA for its self-replicating

Nucleobase (reversible)
Phosphodiester backbone (irreversible)

Trivalent patchy particle

By courtesy of M. Sperling

F Naderi Mehr et al., 257th ACS Meeting Proceedings, 2019
Introduction

Inked polydimethylsiloxane (PDMS) stamps

→ Microcontact printing (µCP)
 Mono-patches

Inked polydimethylsiloxane (PDMS) stamps

180°

→ Sandwich printing
 Bi-patches
Oppositely charged patches

Melamine formaldehyde particles (IEP at pH_e 8.9)
Poly(methyl vinyl ether-alt-maleic acid (M_w 1980 kDa)
Polyethylenimine (M_w 600-1000 kDa)

F Naderi Mehr et al., Soft Matter, 2019, 15, 2430-2438
Oppositely charged patches

SEM image of PEI mono-patch

AFM image of PMVEMA mono-patch

FL image of PMVEMA and PEI mono-patches

FL image of PMVEMA and PEI bi-patches

(Scale bars: 2 µm)

F Naderi Mehr et al., *Soft Matter*, 2019, 15, 2430-2438
Oppositely charged patches

Effect of ink concentration on the thickness of patches

<table>
<thead>
<tr>
<th>Ink Conc.</th>
<th>Mono-patchy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PEI</td>
</tr>
<tr>
<td>1 wt %</td>
<td>25 ± 3 nm</td>
</tr>
<tr>
<td>2 wt %</td>
<td>46 ± 3 nm</td>
</tr>
</tbody>
</table>

F Naderi Mehr et al., *Soft Matter*, 2019, 15, 2430-2438
Self-assembly

Mono-patchy particles (e.g. PEI)

Controlling the charge of particle and patch as well as their electrostatic forces by change of pH_e

<table>
<thead>
<tr>
<th>pH_e</th>
<th>8.9</th>
<th>10.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>% doublet</td>
<td>65 %</td>
<td>86 %</td>
</tr>
<tr>
<td>% PEI patch-particle</td>
<td>5 %</td>
<td>3 %</td>
</tr>
</tbody>
</table>
Self-assembly

Bi-patchy particles

branched

bent

linear

(Scale bars: 5 µm)
Self-assembly

Bi-patchy particles

Accidental or electrostatically directed crosslinking?

Probability rules for possible collision ways between patchy particles
Self-assembly

Increase of ionic strength

Bi-patchy

(Scale bars: 25 µm)
Self-assembly

Increase of ionic strength

Mono-patchy

Bi-patchy

F Naderi Mehr et al., to be submitted, 2019
Conclusion

Generation of zwitterionic mono- and bi-patchy particles via microcontact printing

Electrostatically induced self-assembly

Control of self-assembly by change of pH as well as ionic strength of the medium

(Scale bars: 10 µm)