T. Preller, G. Runge, S. Zellmer, D. Menzel, S. Azimi Saein, J. Peters, A. Raatz, B. Tiersch, J. Koetz, G. Garnweitner
Particle-reinforced and functionalized hydrogels\\r\\nfor SpineMan, a soft robotics application\\r\\n
J. Mater. Sci. 2019, 4444-4456
DOI: 10.1007/s10853-018-3106-6
SpineMan is designed as a prototype of a soft robotic manipulator that is constructed of alternating hard and soft segments similar to the human spine.\\r\\nImplementing such soft segments allows to surpass the rigidity of conventional\\r\\nrobots and ensures safer workspaces where humans and machines can work\\r\\nside by side with less stringent safety restrictions. Therefore, we used a hydrogel\\r\\nas viscoelastic material consisting of poly(vinyl alcohol) and borax. The\\r\\nmechanical properties of the hydrogel were tailored by embedding silica particles\\r\\nof various particles sizes as well as in different mass fractions. Increased\\r\\nmass contents as well as larger particle sizes led to strongly enhanced rigidity\\r\\nwith a more than doubled storage modulus of the composite compared to the\\r\\npure hydrogel. Furthermore, specific functionalities were induced by the\\r\\nincorporation of superparamagnetic Fe3O4 nanoparticles that can in principle be\\r\\nused for sensing robotic motion and detecting malfunctions. Therefore, we\\r\\nprecisely adjusted the saturation magnetization of the soft segments using\\r\\ndefined mass contents of the nanoparticles. To ensure long-time shape stability\\r\\nand prevention of atmospheric influences on the prepared composites, a silicone\\r\\nskin of specific shore hardness was used. The composites and the soft segments\\r\\nwere characterized by oscillation measurements, cryo-SEM, bending tests and\\r\\nSQUID measurements, which give insights into the properties in the passive and\\r\\nin the moving state of SpineMan. The utilization of tailored composites led to\\r\\nhighly flexible, reinforced and functional soft segments, which ensure stability,\\r\\neasy movability by springs of the shape memory alloy nitinol and prevention of\\r\\ntotal failure.\\r\\n
Zurück zur Übersicht »