Publikation

S. Vogel, K. Ebel, R. Schürmann, C. Heck, T. Meiling, A. Milosavljevic, A. Giuliani, I. Bald
Vacuum-UV and Low-Energy Electron Induced DNA Strand Breaks – Influence of the DNA Sequence and Substrate
ChemPhysChem 2019, 20, 823-830
DOI: 10.1002/cphc.201801152
DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. They are irradiated directly with vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7-2.3x10-16 cm2. The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies kleiner 3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold.
Zurück zur Übersicht »